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Abstract— Novel class increamental is a special case of 

concept drift in which a new class comes into existence. To solve 

this problem, update or retrain the model is needed to 

accommodate new knowledge into a model. However, when the 

model is retrained using the latest dataset, the performance 

gradually decreases because the model forgets the previous 

knowledge. This situation is called catastrophic forgetting. 

Therefore, a straightforward solution is rehearsal training with all 

of the past dataset, but some systems have a limitation on the 

amounts of memory saved. This paper proposes a method for 

selecting the small portion of the past dataset as memory 

representative, and then we use GAN and data augmentation to 

generate the samples as an extension of the memory. Experimental 

results show promising results, prevent catastrophic forgetting, and 

increase backward transfer. The model performs better when using 

a low logit sample than a high logit in selecting the representative 

memory and GAN． 

1 Background 

The supervised machine learning scenario always works on the 

simple assumption that a full training dataset is available to model 

at once and always has the same distribution.  However, in reality, 

data may come in batches, and its distribution might change. This 

phenomenon is known as concept drift. One of the concept drift 

cases is the novel class increment[1]. When a new class appear, we 

need to update the old model to accommodate the new class. 

To solve this problem, incremental learning has emerged as the 

solution to adapt the models based on new data to accommodate 

new knowledge[2]. However, when we retrain the model to update 

the model using new data and update its parameters, the model 

only performs well on the new data. The parameter updates 

interfere with previously learned experience, leading to a drastic 

drop in performance on previously learned tasks—this 

phenomenon is known as catastrophic interference or forgetting [3]. 

Recent studies have shown promising results on rehearsal-based 

methods that use a small portion of previously learned data can 

retain learned experience and mitigate catastrophic forgetting [4], 

[5]. However, this approach can cause overfitting problems to the 

incoming data because the stored samples are much smaller than 

the incoming data, or the samples are ignored during training due 

to their small size. A straightforward solution is to increase the 

memory size as samples arrive gradually, but this does not preserve 

the important resource constraint of limited memory capacity in 

the problem settings. Therefore, we need a strategy that maintains 

the previously learned experience with only a small or limited 

sample. 

This chapter focuses on the rehearsal-based approach to 

maintaining information of the learned knowledge as much as 

possible with a few samples to solve class imbalance or overfitting 

problems. In [6], [7], we find that samples produced by the 

generative method are accurate enough to retain knowledge. 

However, the algorithm's efficacy heavily depends on the quality 

of the generator. So, our approach stores one generator to generate 

representatives of all the previous samples. Then we use the 

generator to generate samples and retrain the model with memory 

to avoid bias in the model. 

2 Rehearsal-Based Incremental Learning 

In this chapter, we propose a rehearsal framework that allows 

training deep convolutional networks in classification using 

representative memory and pseudo-memory.The framework is 

based on the learning strategy known as Rehearsal. In the real 

world, the teaching-learning process consists of the literal 

repetition of the exact words that students are required to 

remember, in oral or written form, using simple repetition, 

cumulative repetition, taking notes, and the marking or 

highlighting of texts[13]. In the context of computational neural 

networks, the rehearsal process can be modelled by storing data 

from previous training and then reusing that data to strengthen the 

learnt network and accommodate new knowledge into the 

network[14].  

We consider training and evaluating our model over a sequence 

of tasks  𝒯 = (𝒯0, 𝒯1, . . . , 𝒯𝑁) of N tasks. Each of task 𝒯𝑡 has dataset 

𝒟𝑡𝑎𝑠𝑘
𝑡 = {𝓍𝑛

𝑡 , 𝓎𝑛
𝑡 }𝑛=1

𝑁𝑡  that contain  𝑁𝑡 datapoints and labels. In 𝒯𝑡, 

we assume that 𝓎𝑡 has unique classes, 𝓎𝑡⋂{𝓎0. . 𝓎𝑡−1} = ∅. Our 

proposed method consists of three modules:  

 

 

Fig. 1. Increamental training using rehearsal-based strategy. (a) In initial 

training, a model 𝑀 is trained using current task dataset 𝒟𝑡𝑎𝑠𝑘
0  and, a memory 

reservoir 𝑅   and generator 𝐺0   is builded to generate memory for next 

training. (b) In the incremental training using GAN, task dataset 𝒟𝑡𝑎𝑠𝑘
𝑡 , past 

memory 𝒟𝑚𝑒𝑚
𝑡−1  from memory reservoir and learned experience 𝒟𝑔𝑎𝑛

𝑡−1 

generated from previous generator 𝐺𝑡−1are used to retrain new 𝑀 and 𝐺𝑡. (c) 

In incremental training using augmentation similar to GAN, the difference is 

that there is no generator and an augmented dataset 𝒟𝑎𝑢𝑔
𝑡−1  augmented from 

𝒟𝑔𝑎𝑛
𝑡−1. 

 



A. Classifier 

In the experiment we use a convolutional neural network (CNN) 

based model to classify a audio scene. The CNN consists of several 

convolutional layers where each convolutional layer contains 

several kernels that are convolved with the input feature maps to 

capture their local patterns. A classifier 𝑀   consists of feature 

extractor 𝐹 and classifier head 𝐶, 𝑀(𝐹(𝑥; 𝜃); 𝐶). To classify data 

𝑥, 𝑀 extract feature 𝑢 using 𝐹 that parameterise by 𝜃. 𝐶 needs 𝑉 

as a matrix that projects 𝑢 to class score using 𝒜 softmax function,  

𝐶 = 𝒜(𝑉𝑢), to classify the feature. The 𝐹 itself contains 12 layers 

of CNN with Batch Normalisation and Dropout layer. Detail 

network architecture showed in Fig.2. 

B. Rehearsal Memory 

Rehearsal memory is a subset of representative samples of the 

previous dataset, 𝒟𝑚𝑒𝑚 ⊂ 𝒟𝑡𝑎𝑠𝑘  . When the 𝑀  is trained, the 

rehearsal memory 𝒟𝑚𝑒𝑚
𝑡  is selected from 𝒟𝑡𝑎𝑠𝑘

𝑡  and they are 

stored in the memory reservoir 𝑅𝑡 . 𝒟𝑚𝑒𝑚
𝑡  was selected using 

several methods:  

• High or low probability. This method uses the number 

generated from 𝒜 that indicates the level of probability of 

the classification result. The higher the value, the more likely 

the classifier is to be correctly classified. Using a high logit 

means we focus on storing learning data with a high 

probability of being classified correctly. Conversely, if we 

choose a low probability, we store the representative 

memory containing data that is likely to be misclassified. 

• Mean clustering. Mean clustering utilizes the average 

feature 𝑢 to select data to be stored in representative memory. 

The smaller the distance from the average means that the data 

selected is data that frequently appears in the dataset. 

• Barycenter. The concept used in this method is similar to 

using mean clustering. However, the samples selected are 

samples whose 𝑢 are the closest to their moving barycenter 

distance [15]. 

• Random selections. Randomly selected samples from the 

current dataset.  

C. Pseudo-rehearsal Memory 

Pseudo-rehearsal memory is a set of generated samples that used 

in the retraining process. In this chapter, pseudo-rehearsal memory 

can be generated in two ways: using the generative method and 

data augmentation. In the generative method, we train our 

generator 𝐺𝑡  using Memory Replay GAN (MER-GAN)[7] to 

generate dataset 𝒟𝑔𝑎𝑛
𝑡 . Generative adversarial networks (GANs) 

are a popular framework for image generation due totheir 

capability to learn a mapping between a low-dimensional latent 

space and a complex distribution of interest, such as natural images. 

A GAN consists of two networks, a Generator and a Discriminator, 

competing with each other in a zero-sum game framework.  

MER-GAN consists of three components: generator, 

discriminator and classifier. The discriminator and classifier share 

all layers but the last ones (task-specific layers). The conditional 

generator is parametrized by 𝜃𝐺
 and generate a sample 𝑥 =

𝐺𝜃𝐺(𝑧, 𝑐)  given a latent vector z and a class c. Similarly, the 

discriminator parametrized by 𝜃𝐷
 tries to discern whether an input 

x is real or generated, while the generator tries to fool it by 

generating a more realistic sample. In addition, MER-GAN uses 

an auxiliary classifier C with parameter 𝜃𝐶
 to predict the label �̃� =

𝐶𝜃𝐶(𝑥), and thus forcing the generator to generate images that can 

be classified in the same way as real images 

To train MER-GAN, we use join-retraining with replayed 

samples. The generator has an active role by replaying memories 

of previous tasks (via generative sampling) and using them during 

the training of the current task to prevent forgetting. Firstly we 

create dataset  𝒟𝑔𝑎𝑛
𝑡  contain generated sample from all previous 

tasks from task 0 to 𝑡. To update 𝑀 and 𝐺𝑡 , we use the retrain 

dataset 𝒟𝑟𝑒𝑡𝑟𝑎𝑖𝑛
𝑡 , which contain 𝒟𝑡𝑎𝑠𝑘

𝑡 , 𝒟𝑚𝑒𝑚
𝑡−1  and  𝒟𝑔𝑎𝑛

𝑡−1   . The 

illustration of the retraining procedure with GAN can be found in 

Fig. 1(b). 

Once the extended dataset is created, the network is trained 

using joint training as 

min
𝜃𝑡

𝐺
(𝐿𝐺𝐴𝑁

𝐺 (𝜃𝑡 , 𝒟𝑟𝑒𝑡𝑟𝑎𝑖𝑛
𝑡 ) + 𝜆𝐶𝐿𝑆𝐿𝐶𝐿𝑆

𝐺 (𝜃𝑡, 𝒟𝑟𝑒𝑡𝑟𝑎𝑖𝑛
𝑡 )) (1) 

min
𝜃𝑡

𝐷
(𝐿𝐺𝐴𝑁

𝐷 (𝜃𝑡 , 𝒟𝑟𝑒𝑡𝑟𝑎𝑖𝑛
𝑡 ) +  𝜆𝐶𝐿𝑆𝐿𝐶𝐿𝑆

𝐷 (𝜃𝑡 , 𝒟𝑟𝑒𝑡𝑟𝑎𝑖𝑛
𝑡 )) (2) 

𝐿𝐺𝐴𝑁
𝐺 (𝜃𝑡 , 𝒟𝑟𝑒𝑡𝑟𝑎𝑖𝑛

𝑡 ) = −𝔼𝑧~𝑝𝑧 ,𝑐~𝑝𝑐
[𝐷𝜃𝐷(𝐺𝜃𝐺(𝑧, 𝑐))] (3) 

𝐿𝐶𝐿𝑆
𝐺 (𝜃𝑡 , 𝒟𝑟𝑒𝑡𝑟𝑎𝑖𝑛

𝑡 ) = −𝔼𝑧~𝑝𝑧 ,𝑐~𝑝𝑐
[𝑦𝑐𝑙𝑜𝑔 𝐶𝜃𝐶 (𝐺𝜃𝐺(𝑧, 𝑐))]  (4) 

𝐿𝐺𝐴𝑁
𝐷 (𝜃𝑡 , 𝒟𝑟𝑒𝑡𝑟𝑎𝑖𝑛

𝑡 ) = −𝔼(𝑥,𝑐)~𝑆[𝐷𝜃𝐷(𝑥)]  +

𝔼𝑧~𝑝𝑧,𝑐~𝑝𝑐
[𝐷𝜃𝐷(𝐺𝜃𝐺(𝑧, 𝑐))]  +

  𝜆𝐺𝑃𝔼𝑥~𝑆,𝑧~𝑝𝑧,𝑐~𝑝𝑐,𝜖~𝑝𝜖
[(‖∇𝐷𝜃𝐷(𝜖𝑥 + (1 −

𝜖)𝐺𝜃𝐺(𝑧, 𝑐))‖ − 1)
2

]  

(5) 

𝐿𝐶𝐿𝑆
𝐷 (𝜃𝑡 , 𝒟𝑟𝑒𝑡𝑟𝑎𝑖𝑛

𝑡 ) = −𝔼(𝑥,𝑐)~𝑆[ 𝐶𝜃𝐶(𝐺𝜃𝐺(𝑧, 𝑐))] (6) 

 

The GAN loss uses the WGAN formulation with gradient 

penalty where 𝐿𝐺𝐴𝑁
𝐺 (𝜃𝑡, 𝒟𝑟𝑒𝑡𝑟𝑎𝑖𝑛

𝑡 )  and 𝐿𝐶𝐿𝑆
𝐺 (𝜃𝑡, 𝒟𝑟𝑒𝑡𝑟𝑎𝑖𝑛

𝑡 )  are loss 

for generator and the cross entropy loss for classification, 

respectively, 𝑝𝑐  = 𝑈(1, 𝑡) , 𝑝𝑧 = 𝑁(0,1)  are the sampling 

distributions (uniform and Gaussian, respectively), 𝑦𝑐  is the one-

hot encoding of c for computing the cross-entropy, 𝜖  are 

parameters of the gradient penalty term, sampled as 𝑝𝜖 = 𝑈(0,1) 

and the last term of 𝐿𝐺𝐴𝑁
𝐷

 is the gradient penalty. 

 

Fig. 2. Classifer Architecture 

 



In the augmentation method, the dataset 𝒟𝑟𝑒𝑡𝑟𝑎𝑖𝑛
𝑡 contain  𝒟𝑡𝑎𝑠𝑘

𝑡 , 

𝒟𝑚𝑒𝑚
𝑡−1  and  𝒟𝑎𝑢𝑔

𝑡−1  . 𝒟𝑎𝑢𝑔
𝑡−1  is the augmentation result of  𝒟𝑚𝑒𝑚

𝑡−1   

using Frequency masking[16]. This method masks several blocks 

of consecutive frequency channels by a uniform distribution. The 

illustration of the retraining procedure can be found in Fig. 1(c). 

3 Experiment Setup 

We use the TAU Urban Acoustic Scenes 2019. The dataset has 

10 classes divided into 5 tasks, where each task contains two 

unique classes. In the experiment, we compared the use of Pseudo-

memory with GAN alone with low and high representative 

memory 𝒟𝑚𝑒𝑚. Table 1 shows the detailed experiment scenario. 

Table 1. Experiment Scenario 

Experiment Scenario 𝓓𝒎𝒆𝒎 𝓓𝒈𝒂𝒏 𝓓𝒂𝒖𝒈 

GAN Alone (S0) - 100% - 

Low Memory GAN (S1) 10% 90% - 

Low Memory Augmented (S2) - 90% 10% 

High Memory GAN (S3) 75% 25% - 

High Memory Augmented (S4) - 25% 75% 

To measure the proposed method, we use average accuracy and  

Backward Transfer (BWT). BWT measures the influence that 

learning a task has on the performance of previous tasks.  

ACC =
1

𝑇
∑ Acc𝑇,𝑖

𝑇
𝑖=1   (7) 

BWT =
1

𝑇−1
∑ 𝐴𝑐𝑐𝑇,𝑖

𝑇−1
𝑖=1 − 𝐴𝑐𝑐𝑖,𝑖  (8) 

where T is the number of tasks and 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦
𝑖,𝑖

 is the test 

accuracy score for task j after the model learned task i. We train 

our classifier task for 100 epochs and GANs for 500 epochs. The 

Adam optimizer is used in all experiments, and the learning rate 

for classifier dan GANs are 1e-4 and 1e-4, respectively. 

4 Result and Discussion 

Using GAN alone or S0 to regenerate samples from prior 

knowledge shows that this strategy can overcome catastrophic 

forgetting, but the model's performance degrades over time. The 

overall average accuracy using S0 is 0.733. Fig. 3 shows that the 

accuracy of S0 decreases as the number of classes increases. 

Furthermore, according to the detailed analysis, the task accuracy 

results show no positive backward transfer in retraining. Positive 

backward transfer is the influence of the current training that 

improves the accuracy of the previous tasks. So this method (S0) 

is not recommended in high incremental phases. 

The use of  𝒟𝑚𝑒𝑚  both with 𝒟𝑔𝑎𝑛  or  𝒟𝑎𝑢𝑔  can be used to 

overcome the problem of data degradation.  𝒟𝑎𝑢𝑔 show promising 

results at S4, especially for the cluster mean method with an 

average accuracy of 0.7735. The cluster mean method also showed 

the highest accuracy for this combination at high and low memory 

counts. However, at S2, the overall accuracy is lower than S0 in 

most memory selection methods. 

The experimental results show that the use of 𝒟𝑔𝑎𝑛 outperforms 

 𝒟𝑎𝑢𝑔 both in high and low memory. When using this combination, 

the classifier's performance improved and showed more stable 

accuracy, and some backward transfer was found, both in high and 

low memory. The average accuracy of the GAN combination in S1 

and S3 were 0.7651 and 0.8418, respectively. 

In the S1, using the random selection method shows the best 

results with an overall accuracy of 0.8581. However, selecting 

samples with low logit values shows the best performance in S3 

with an average accuracy of 0.7805. The use of low logit also 

shows a higher average backward transfer than high probability, 

with an overall accuracy of 0.8510.  

In this experiment, the larger number of representative 

memories is the larger positive BWT. The largest positive BWT 

was obtained when using high probability feature on low and high 

representative memory with GAN (S1 and S3) of 0.0222 and 

0.0041, respectively. Detail accuracy of these scenario can be seet 

at Fig.4 and Fig. 5. In Fig.4, in task 1 until 5 there are many 

accuracy improvement after learning new task. 

Table 1. Positive BWT result 
 

Representative Memory Selection 

High Prob. Low Prob. Random Bary Center Cluster 

S1 0.0041 0 0 0 0 

S2 0 0 0 0.0116 0 

S3 0.0223 0.0037 0.0055 0.0141 0.0034 

S4 0.0134 0.0303 0.0085 0.0470 0.0399 

We also compare the memory usage of the original dataset, 

representative memory, and GAN model size. The original dataset 

stores 3.9 GB of audio per class. For high and low  𝒟𝑚𝑒𝑚  require 

73.6 MB and 16  MB per class. Our generator G requires a constant 

memory requirement of 82.85 MB for all classes. So by using a 

generator, the size of memory used remains the same, even if the 

number of experience models increases over time. 

 

Fig. 3. Model accuracy in high and low representative memory 

 



5 Conclusion 

In this paper, we propose a framework to train audio scene 

classifiers using a rehearsal-based strategy incrementally. This 

method consists of three modules: classifier, rehearsal memory and 

pseudo-rehearsal memory. Rehearsal memory obtained by 

selecting the small portion of the past dataset as memory 

representative. Then we use GAN to generate the samples as an 

extension of the representative memory to avoid overfitting. 

Experimental results show promising results, prevent catastrophic 

forgetting, and increase backward transfer. The model performs 

better when using a low logit sample rather than a high logit in 

selecting the representative memory. 
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Fig. 4. Model accuracy in high and low representative memory 

 

Fig. 5. Model accuracy in high and low representative memory 

 

N 1 2 3 4 5 Average

1 0.9963 0.9963

2 0.8173 0.8327 0.825

3 0.9446 0.6684 0.7061 0.773033

4 0.9244 0.6483 0.6157 0.6728 0.7153

5 0.7915 0.7871 0.6922 0.7404 0.8021 0.76266

0.814459

High Probability 75% +GAN

N 1 2 3 4 5 Average

1 0.9713 0.9713

2 0.7348 0.7278 0.7313

3 0.6736 0.7246 0.7505 0.716233

4 0.6881 0.6708 0.6557 0.6556 0.66755

5 0.7876 0.668 0.6973 0.6241 0.8893 0.73326

0.763929

High Probability 10% + GAN


