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Abstract. In the real-world, data are non-stationary,  which means 

that the probability distribution that generates data samples is time-

varying. This phenomenon is known as concept drift. The ability 

to detect and adapt to concept drift in order to prevent degradation 

in accuracy is essential. In this research, we propose two 

algorithms to detect and adapt the concept drift to detect 

environment scene, namely Kernel Density Drift Detection (KD3) 

and Combine-Merge Gaussian Mixture Model (CMGMM). KD3 

is based on a variational comparison of two kernel density 

estimation of current and previous windows, and CMGMM is an 

algorithm for adapt to concept drift is based on combining and 

merging the existing and new components Gaussian mixture model. 

In the experiment, our methods show better performance and can 

detect concept drift then adapt to the change, so the model accuracy 

is relatively stable. 

1 Introduction 

Most machine learning implementation focuses on static 

building models, i.e., a model that is trained in the training dataset 

and then is applied to test the data. This works well when the 

underlying data distribution that is modeled remains stationary. 

However, in many real-world applications, the process is not 

stationary and continues to change over time. For example, scene 

sound from the park is changing over time depends on the season 

where in summer, we can hear the insect sound as background 

noises. 

An acoustic scene is defined as a concept that humans 

commonly use to identify an acoustic environment that contains an 

ensemble of background noise and sound events in a particular 

scenario[1]. In the real world, each scene class might contain many 

types of event sounds and background noises, depending on the 

location and time. Moreover, the sound can be corrupted by non-

stationary noise, diverse sound events,  overlapping audio events 

in time or frequency domain, might have echoes or reverberant 

operating conditions. The above situation might exist 

simultaneously, which increases the complexity of the task in a 

combinatorial way [7] and change the data distribution. Besides, it 

is difficult to collect all those possible sound as the dataset for 

model training. 

One solution to maintain models with the non-stationary 

environment is to retrain and redeploy the models. However, this 

process can be time-consuming, difficult to select the frequency of 

updates, and expensive to retrain models. Another promising 

approach is using an incremental or evolving learning paradigm 

[2][3]. Under incremental or evolving learning, model iteratively 

updated upon newly arrived data [4]. Each iteration is denoted as 

an incremental clustering step to update the current model, and 

every step only processes the newly incoming subset and obtains 

data concepts based upon these data. 

In this paper, we propose a Combine-Merge Gaussian Mixture 

Model (CMGMM). The motivation of the proposed algorithm is to 

develop and implement an incremental audio scene classifier that 

works in a real-life scenario where the event sounds and 

background noises in the scene might change. There have been 

some previous research works on the evolving GMM algorithm. In 

[5], propose an IGMM (Incremental Gaussian Mixture Model) 

clustering algorithm by incremental density approximation from 

the observed samples, [6] propose IGMM algorithm based on 

Robbins–Monro stochastic approximation. Also, [7] apply IGMM 

by the expectation-maximization algorithm and a cluster merging 

strategy using multivariate statistical tests for equality of 

covariance and mean. Most of these works use a passive approach 

where adaptation is cyclically performed to handle non-stationary 

data. 

On the contrary, CMGMM employs an active approach where 

model adaptation is performed only when concept drift is detected. 

Another feature of the CMGMM is to take into account 

distributions of pre-trained scene classifier as well because basic 

scene classes are not drastically changed over time. For example, 

beach scenes contain typical sounds of beaches, and the sound is 

hardly changed, but only beach-related sounds are added. 

2 Proposed Method 

2.1 Kernel Density Drift Detection 

Kernel Density Drift Detection (KD3) works based on the kernel 

density estimation (KDE) method [8] to estimate the probability 

density function with one random variable. By comparing two 

density functions, it is possible to establish the degree of variation 

in values between the corresponding variables—the greater the 

variation, the more evidence for the concept drifts. In addition to 

detecting concept drifts, KD3 also acts as a data collector for the 

adaptation process by marking a warning zone where data begin to 

show symptoms of concept drift. 

KD3 requires four input parameters: 𝑧, α, β, and ℎ. 𝑧 denotes a 

set of likelihood windows,  𝑧 = {𝑧1, 𝑧2, 𝑧3, … , 𝑧𝑐}, where 𝑧𝑐  is the 

current likelihood window that contains a sequence of log-

likelihood ℓ from the model prediction, 𝑧𝑐= {ℓ1, ℓ2, ℓ3, … , ℓℎ}. ℎ 

denotes the window length, α denotes the margin for detecting a 

concept drift, and β denotes the margin for accumulating the 

density distance.  



KD3 works by comparing two windows, namely, the current 

window 𝑧𝑐  and the previous window  𝑧𝑐−1 . Let  ℓ𝑛  be the latest 

generated ℓ, and  𝑧𝑐  contain ℎ latest ℓ from ℓ𝑛 ,  𝑧𝑐 ∈ [ℓ𝑛−ℎ, ℓ𝑛] 

and  𝑧𝑐−1 contain ℎlatest ℓ from ℓ𝑛−ℎ , 𝑧𝑐−1 ∈ [ℓ𝑛−2ℎ , ℓ𝑛−ℎ]. The 

first step of the algorithm is to compute the Gaussian kernel density 

function (𝑓𝑘𝑑𝑒 ) of  𝑧𝑐  and 𝑧𝑐−1  . To detect a concept drift, the 

distance �̀�𝑡 between  𝑓𝑘𝑑𝑒 of  𝑧𝑐  and 𝑧𝑐−1 is computed using Eq. 1 

within the bounds of  𝑏1 and 𝑏2. The bounds are computed based 

on the maximum and minimum values of the  joined ℓ of  𝑧𝑐  and 

𝑧𝑐−1.  
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2.2 Combine-Merge Gaussian Mixture Model 

CMGMM is developed based on a GMM defined by a set of 

parameters πj, µj, and Σj denoting the prior probability, distribution 

means, and covariance matrix, respectively. 

 The model adaptation process begins by creating a new model 

ℳdrift from data drifts Ddrift using Algorithm 1, and then combining 

the existing model ℳcurr to form a new model ℳall. ℳall contains 

all components from both ℳcurr and  ℳdrift. The next step is to 

calculate the pairwise distance between components in ℳall using 

Kullback–Leibler (KL) discrimination presented in [9]. The KL 

discrimination formula (Eq. 5) enables us to put an upper bound on 

the discrimination of the mixture before and after the merging 

process. According to this formula the following components are 

selected for merging: components with low weights, components 

with means being close to their variances, and components with 

similar covariance matrices. When two components are merged, 

the moment-preserving merging method [10] is used to preserve 

the mean and covariance of the overall mixture (Figure 1). 

Finally, the algorithm iteratively merges the components in 

ℳ𝑎𝑙𝑙 ranging from nCompMin to nCompMax to obtain the best model 

ℳbest, where nCompMin and nCompMax are the smallest and largest 

numbers of components derived from ℳcurr and ℳall, respectively, 

to be included into ℳbest. For each iteration, the algorithm finds 

the least similar components. The merging process follows the 

rules set by Eqs. 2-4 
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𝑑𝑘𝑙 ((𝑤𝑖, 𝜇𝑖 , Σ𝑖), (𝑤𝑗 , 𝜇𝑗 , Σ𝑗))
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 [𝑤𝑖𝑗 log(det(Σ𝑖𝑗)) − 𝑤𝑖 log(det ( Σ𝑖))

− 𝑤𝑗 log(det ( Σ𝑗))] 

(5) 

 

3 Experiment 

For training and evaluations, we generated dataset by selecting 

15 kinds of scenes from TUT Acoustic scenes 2017 dataset [11] 

and TAU Urban Acoustic Scenes 2019 dataset [12] dataset. The training 

dataset consists of 12000 audio segments of ten seconds, equally 

distributed between 15 different scenes, and of the annotated 

ground truth. Then we split randomly the dataset into a training 

dataset (9000 segments) dan test dataset (3000 segments). The 15 

scenes are beach, bus, cafe/restaurant, car, city center, forest path,  

grocery store, home, library, metro station, office, park, residential 

area, train, and tram. 

To confirm the performance, an artificially generated drifted 

dataset that contains concept drift scenarios, namely T1, T2, and 

T3, are used to test how good the proposed method detects and 

adapts. The number of generated sounds for each scenario is 12000 

segments. Furthermore, we also add the test dataset into the drifted 

dataset, so in total, the number of scene segments is 15000 for each 

scenario.  

The concept drift is simulated by overlaying novel event sounds 

to scene sound with each scenario, as shown in Figure 3. The novel 

event sounds are taken from event sound dataset from BBC Sound 

Class Library, UrbanSound, and UrbanSound8K datasets 

randomly, on random position and random gain. There are 46 

classes and 371 new event sound that will add to the scene based 

on three scenarios, namely : 

• T1 Dataset. In T1, several types of unique event sounds 

related to each scene were overlaid several times with random 

timing and gains. For example, for the beach scene, sounds 

representing a dog barking, people talking, people swimming, 

and raining were overlaid with random timing and gain. None 

of these sounds were included in the initial training dataset. 

As a result, the prior distribution of the test data changed, 

representing the added concept drift. 

 

Figure 2. Process of the proposed CMGMM-based algorithm 

 

 

Figure 1. Kernel density drift detection 

 



• T2 Dataset. In T2, several sounds were randomly selected 

from a particular group of event sounds, making the concept 

drift of this scenario to be more complicated than that of 

scenario T1. For example, several types of dog-barking 

sounds from the dog group were added to the beach scene. 

Similar to T1, the included sounds were related to the 

respective scene and were overlaid using random timing and 

gain; none of the added sounds were included in the initial 

training dataset.  

• T3 Dataset. T3 was quite similar to T2. The difference was 

that a group of event sounds could exist in several scenes (co-

existing event classes between scenes). For example, the 

group of dog-barking sounds could exist in three scenes, e.g., 

the beach, forest path, and city center scenes. As a result, the 

prior and posterior distribution of the test data changed. 

The effectiveness of the proposed CMGMM was demonstrated 

by comparing it to the IGMM [13]. The models were tested under 

the earlier introduced three scenarios (T1, T2, and T3) and the 

following two approaches, namely, active and passive. 

• Active approach. This approach assumes that the models 

detect concept drifts using a concept drift detector and make 

adaptations upon the detected drifts. In this study, we 

compared the proposed drift detection method KD3 to the 

adaptive windowing (ADWIN) method [14] and drift 

detection method based on the Hoeffding’s inequality 

(HDDM) [15]. 

• Passive approach. This approach assumes that the models 

adapt continuously as soon as new incoming data are received. 

Several adaption cycles were tested, namely, 50,100, 150, and 

200. 

4 Result 

Experimental results are shown in Table 1, both active and 

passive approaches. In terms of the active approach, results are 

shown for all combinations of detector methods and adaptation 

methods and passive approach in every cycle of the adaptation 

process.  

Judging from overall accuracy and F1 Score, we can say that the 

active approach is promising because, in all scenarios, the best 

performance was achieved by the active approach. Moreover, KD3 

is showed better performance than ADWIN except for T1. This is 

mainly because KD3 precisely takes distributions into account, 

while ADWIN uses the only average of the distribution. A 

drawback of KD3 is its high computational cost. On the other hand, 

HDDM showed extremely worse performance than all the others. 

The reason is that, as shown in Table 1, HDDM detected the drift 

too much, say more than 350 times. According to all the above 

results, the detector of the concept drift plays an important role in 

the concept drift adaptation. 

In terms of the overall accuracy, CMGMM shows better 

performance than IGMM except for T1. Different from CMGMM, 

IGMM has the parameter of the maximum number of Gaussian 

components for trained distribution. Therefore, when a concept 

drift is simple as T1, IGMM showed better performance than 

 
Figure 3. Illustration of the three test scenarios 

TABLE I.  Experiment Result in Active and Passive Scenario 

ACTIVE APPROACH 

ADAPTOR DETECTOR 
ACCURACY F1 SCORE EXECUTION TIME 

Drift 
T1 T2 T3 T1 T2 T3 T1 T2 T3 

CMGMM* 

KD3* 0.8373 0.7962 0.7409 0.8432 0.7993 0.7460 128.06 115.07 110.49 39 

ADWIN 0.8471 0.6415 0.6332 0.8518 0.6379 0.6379 83.07 84.22 85.44 23 

HDDM 0.2762 0.2627 0.2990 0.3184 0.2992 0.3406 84.81 84.53 83.11 373 

IGMM 

KD3* 0.8283 0.7574 0.6622 0.8173 0.7499 0.6488 120.04 128.75 120.50 35 

ADWIN 0.8419 0.5711 0.6057 0.8329 0.5722 0.6063 82.80 84.219 83.08 21 

HDDM 0.2363 0.2507 0.2032 0.2436 0.3055 0.2675 84.37 87.55 84.87 350 

PASSIVE APPROACH 

ADAPTOR 
ADAPTATIO

N CYCLE 

ACCURACY F1 SCORE EXECUTION TIME 
 Drift 

T1 T2 T3 T1 T2 T3 T1 T2 T3 

CMGMM* 

50 0.5621 0.4451 0.4003 0.5719 0.4615 0.4373 83.178 82.945 83.163 - 

100 0.7424 0.6547 0.6434 0.7451 0.6583 0.6476 83.688 82.265 83.704 - 

150 0.8002 0.7437 0.7301 0.8043 0.7482 0.7327 84.527 82.298 89.555 - 

200 0.7602 0.7073 0.6904 0.7663 0.714 0.7001 83.414 85.922 84.594 - 

IGMM 

50 0.5365 0.4209 0.3687 0.5458 0.4319 0.3888 84.467 82.776 82.655 - 

100 0.7324 0.643 0.6371 0.736 0.6448 0.6388 82.693 82.652 82.199 - 

150 0.8056 0.7401 0.7291 0.8107 0.7431 0.7223 83.659 82.645 83.453 - 

200 0.7528 0.7149 0.6899 0.7609 0.722 0.6981 84.597 84.228 85.797 - 

 (*) Proposed Method 

 



CMGMM. However, when the concept drift has occurred with a 

complicated combination of event sounds, CMGMM 

outperformed IGMM, because CMGMM allows flexible 

adaptation with combination and merge mechanism and has no 

limitation for the number of Gaussian components 

5 Conclusion 

In this paper, we proposed the CMGMM algorithm for adapting 

the concept drift together with the KD3 algorithm to detect concept 

drift based on log-likelihood. Judging from the experiment results, 

we can say that the proposed algorithm works well in detecting and 

adapting for the three kinds of drift scenarios. Moreover, by 

comparing the active approach and passive approach, we found 

that the number of data to adapt to the model is a crucial factor in 

having better accuracy. Although KD3 can successfully change the 

number of data to adapt to some extent, as future work, we would 

like to improve the concept drift detection algorithm to optimally 

conges the number of data. 
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